Teaching - Dr. Kun Ma, University of Jinan, China
Kun Ma  Kun Ma

My direction

My teaching course range from Software Engineering and Network Engineering.

CoursesTOP

Postgraduates

  • 2017-*, Advanced Software Engineering (For Academic Postgraduates & Professional Postgraduates)
  • 2012-2016, Software Architecture Design (For Academic Postgraduates & Professional Postgraduates)
  • Undergraduates

  • 2017-*, New technology in computers (For Undergraduate)
  • 2017-*, IT in computers (For Undergraduate)
  • 2017-*, Professional Introduction 1&2 (For Undergraduate)
  • 2012-*, Modern Software Engineering Technology (For Undergraduate)
  • 2012-2015, Curriculum Design of Modern Software Engineering Technology (For Undergraduate)
  • 2012-*, Enterprise Software Development Process (For Undergraduate, outsanding engineers)
  • 2012, Web System Design (For Undergraduate)
  • 2012, UNIX System Management: Introduction, start of UNIX management, UNIX Files System (For Undergraduate)
  • Journal Papers (Postgraduates)TOP

    2025

      2024

        2023

          2022

            2021

              2020

                2019

                  2018

                    2017

                      2016

                        2015

                        • Yu, Z. and Ma, K., "Toward Core Point Evolution Using Water Ripple Model," WSEAS Transactions on Computers, 2015, 14 (Art. #79): 819-825
                          ISSN: 1109-2750, Date:
                          SCImago Journal & Country Rank   Abstract  BiBTeX

                          Abstract

                          This article presents software library for the Arduino platform which significantly improves the speed of the functions for digital input and output. This allows the users to apply these functions in whole range of applications, without being forced to resort to direct register access or various 3rd party libraries when the standard Arduino functions are too slow for given application. The method used in this library is applicable also to other libraries which aim to abstract the access to general purpose pins of a microcontroller.

                          BiBTeX

                          @article {YuToward2015, title={Toward Core Point Evolution Using Water Ripple Model}, author={Zhibing Yu and Kun Ma}, journal={WSEAS Transactions on Computers}, pages={819-825}, year={2015}, volume={14}, number={Art. #79}}
                        • Dong, F., Yang, B., Ma, K., and Wang, W., "Incremental duplicate data detection method with MapReduce," Journal of University of Jinan (Science and Technology), 2015, 29 (4): 241-245
                          ISSN: 1671-3559, Date: 2015/8/1
                            Abstract  BiBTeX

                          Abstract

                          针对重复数据检测过程中增量数据重复值检测问题进行分析,在基本近邻排序算法基础上,提出增量近邻排序比较算法。该算法通过跳动窗口形式比较相邻数据,大大减少了数据比较次数;同时引入MapReduce模型对该算法加以改进以提高其海量数据处理的能力。实验表明,改进后的增量近邻排序比较算法在保证检则结果准确的前提下,能够有效提高增量数据重复检测的速度,并且算法具有较高的稳定性,更适应海量数据环境中重复数据检测任务。

                          BiBTeX

                          @article{董富森2015mapreduce,  title={MapReduce 模型下增量重复数据检测方法},  author={董富森 and 杨波 and 马坤 and 王文华},  journal={济南大学学报 (自然科学版)},  volume={4},  pages={001},  year={2015}}
                        • Dong, F., Ma, K., and Yang, B., "Cache System for Frequently Updated Data in the Cloud," WSEAS Transactions on Computers, 2015, 14 (Art. #17): 163-170
                          ISSN: 1109-2750, Date:
                          SCImago Journal & Country Rank   Abstract  BiBTeX

                          Abstract

                          Maintaining data indexes and query cache becomes the bottleneck of the database, especially in the context of frequently updated data. In order to reduce the burden of the database, a cache system for frequently updated data has been proposed in this paper. In the system, update statements are parsed firstly. Then updated data are saved as key-value pairs in the cache and they are synchronized into the database at idle time. Experimental results show that the proposed cache system cannot only accelerate the data updating rate, but also improve the data writing ability in maintaining indexes and consistency of cache data greatly.

                          BiBTeX

                          @article {DongCache2015, title={Cache System for Frequently Updated Data in the Cloud}, author={Fusen Dong and Kun Ma and Bo Yang}, journal={WSEAS Transactions on Computers}, pages={163-170}, year={2015}, volume={14}, number={Art. #17}}

                        2014

                        • Tang, Z. and Ma, K., "RSSCube: A Content Syndication and Recommendation Architecture," International Journal of Database Theory and Application, 2014, 7 (4): 237-248 (EI: 20143718151244)
                          ISSN: 2005-4270, Date: 2014/8/31
                            Abstract  BiBTeX

                          Abstract

                          Content syndication is the process of pushing the information out into third-party information providers. The idea is to drive more engagement with your content by wiring it into related digital contexts. However, there are some shortages of current related products, such as search challenges on massive feeds, synchronization performance, and user experience. To address these limitations, we aim to propose an improved architecture of content syndication and recommendation. First, we design a source listener to extract feed changes from different RSS sources, and propagate the incremental changes to target schema-free document stores to improve the search performance. Second, the proposed recommendation algorithm is to tidy, filter, and sort all the feeds before pushing them to the users automatically. Third, we provide some OAuth2-authorization RESTful feed sharing APIs for the integration with the third-party systems. The experimental result shows that this architecture speeds up the search and synchronization process, and provides friendlier user experience.

                          BiBTeX

                          @article {TangRSSCube2014, title={RSSCube: A Content Syndication and Recommendation Architecture}, author={Zijie Tang and Kun Ma}, journal={International Journal of Database Theory and Application}, pages={237-248}, year={2014}, volume={7}, number={4}}

                        2013

                          2012

                          Journal Papers (Graduates)TOP

                          2025

                            2024

                            • Xinyu Liu, Kun Ma*, Ke Ji, Zhenxiang Chen, and Bo Yang, "Graph-based Multi-information Integration Network with External News Environment Perception for Propaganda Detection," International Journal of Web Information Systems, 2024, 20 (2): 195-212 (EI: 20240815605997)
                              ISSN: , Date: 2024/02/14
                                Abstract  BiBTeX

                              Abstract

                              Purpose
                              Propaganda is a prevalent technique used in social media to intentionally express opinions or actions with the aim of manipulating or deceiving users. Existing methods for propaganda detection primarily focus on capturing language features within its content. However, these methods tend to overlook the information presented within the external news environment from which propaganda news originated and spread. This news environment reflects recent mainstream media opinions and public attention and contains language characteristics of non-propaganda news. Therefore, the authors have proposed a graph-based multi-information integration network with an external news environment (abbreviated as G-MINE) for propaganda detection.

                              Design/methodology/approach
                              G-MINE is proposed to comprise four parts: textual information extraction module, external news environment perception module, multi-information integration module and classifier. Specifically, the external news environment perception module and multi-information integration module extract and integrate the popularity and novelty into the textual information and capture the high-order complementary information between them.

                              Findings
                              G-MINE achieves state-of-the-art performance on both the TSHP-17, Qprop and the PTC data sets, with an accuracy of 98.24%, 90.59% and 97.44%, respectively.

                              Originality/value
                              An external news environment perception module is proposed to capture the popularity and novelty information, and a multi-information integration module is proposed to effectively fuse them with the textual information.

                              BiBTeX

                            • Xinyu Liu, Kun Ma*, Qiang Wei, Ke Ji, Bo Yang, and Ajith Abraham, "G-HFIN: Graph-based Hierarchical Feature Integration Network for Propaganda Detection of We-media News Articles," Engineering Applications of Artificial Intelligence, 2024, 132 (): 1-16 (EI: 20240515464076, WOS: 001170111600001; IF: 7.802, CCF-C, Q2, Top期刊)
                              ISSN: , Date: 2024/1/23
                              SCImago Journal & Country Rank
                              Code and data   Abstract  BiBTeX

                              Abstract

                              BiBTeX

                            • Qiang Wei, Kun Ma*, Xinyu Liu, Ke Ji, Bo Yang, and Ajith Abraham, "DIMN: Dual Integrated Matching Network for Multi-Choice Reading Comprehension," Engineering Applications of Artificial Intelligence, 2024, 130 (): 1-11 (EI: 20240115321602, WOS: 001149734800001; IF: 7.802, CCF-C, Q2, Top期刊)
                              ISSN: 0952-1976, Date: 2023/12/28
                              SCImago Journal & Country Rank
                              Code and data   Abstract  BiBTeX

                              Abstract

                              Multi-choice reading comprehension is a task that involves selecting the correct option from a set of option choices. Recently, the attention mechanism has been widely used to acquire embedding representations. However, there are two significant challenges: 1) generating the contextualized representations, namely, drawing associated information, and 2) capturing the global interactive relationship, namely, drawing local semantics. To address these issues, we have proposed the Dual Integrated Matching Network (DIMN) for multi-choice reading comprehension. It consists of two major parts. Fusing Information from Passage and Question-option pair into Enhanced Embedding Representation (FEER) is proposed to draw associated information to enhance embedding representation, which incorporates the information that reflects the most salient supporting entities to answer the question into the contextualized representations; Linear Integration of Co-Attention and Convolution (LIAC) is proposed to capture the interactive information and local semantics to construct global interactive relationship, which incorporates local semantics of a single sequence into the question-option-aware passage and passage-aware question-option representation. The experiments are shown that our DIMN performs better accuracy on three datasets: RACE (69.34%), DREAM (68.45%) and MCTest (71.81% on MCTest160 and 78.83% on MCTest500). Our DIMN is beneficial for improving the ability of machines to understand natural language. The system we have developed has been applied to customer service support. Our source code is accessible at https://github.com/vqiangv/DIMN}{https://github.com/vqiangv/DIMN.

                              BiBTeX

                              @article{WEI2024107694,
                              title = {DIMN: Dual Integrated Matching Network for multi-choice reading comprehension},
                              journal = {Engineering Applications of Artificial Intelligence},
                              volume = {130},
                              pages = {107694},
                              year = {2024},
                              issn = {0952-1976},
                              doi = {https://doi.org/10.1016/j.engappai.2023.107694},
                              url = {https://www.sciencedirect.com/science/article/pii/S095219762301878X},
                              author = {Qiang Wei and Kun Ma and Xinyu Liu and Ke Ji and Bo Yang and Ajith Abraham},
                              keywords = {Multi-choice reading comprehension, Contextualized representation, Global interactive relationship, Attention, Convolution},
                              abstract = {Multi-choice reading comprehension is a task that involves selecting the correct option from a set of option choices. Recently, the attention mechanism has been widely used to acquire embedding representations. However, there are two significant challenges: (1) generating the contextualized representations, namely, drawing associated information, and (2) capturing the global interactive relationship, namely, drawing local semantics. To address these issues, we have proposed the Dual Integrated Matching Network (DIMN) for multi-choice reading comprehension. It consists of two major parts. Fusing Information from Passage and Question-option pair into Enhanced Embedding Representation (FEER) is proposed to draw associated information to enhance embedding representation, which incorporates the information that reflects the most salient supporting entities to answer the question into the contextualized representations; Linear Integration of Co-Attention and Convolution (LIAC) is proposed to capture the interactive information and local semantics to construct global interactive relationship, which incorporates local semantics of a single sequence into the question-option-aware passage and passage-aware question-option representation. The experiments are shown that our DIMN performs better accuracy on three datasets: RACE (69.34%), DREAM (68.45%) and MCTest (71.81% on MCTest160 and 78.83% on MCTest500). Our DIMN is beneficial for improving the ability of machines to understand natural language. The system we have developed has been applied to customer service support. Our source code is accessible at https://github.com/vqiangv/DIMN.}
                              }

                            2023

                            2022

                            • Changhao Tang, Kun Ma, Benkuan Cui, Ke Ji, Ajith Abraham, "Long Text Feature Extraction Network with Data Augmentation," Applied Intelligence, 2022, 52 (12): 17652–17667 (WOS: 000777881900008, IF: 5.019, EI: 20221511941186, CCF-C, Q2)
                              ISSN: 0924-669X, Date: 2022/04/04
                              SCImago Journal & Country Rank
                              Code and data   Abstract  BiBTeX

                              Abstract

                              BiBTeX

                              @article{tang2022long,
                                title={Long text feature extraction network with data augmentation},
                                author={Tang, Changhao and Ma, Kun and Cui, Benkuan and Ji, Ke and Abraham, Ajith},
                                journal={Applied Intelligence},
                                pages={1--16},
                                year={2022},
                                publisher={Springer}
                              }

                            2021

                            • 吕晓琦, 纪科, 陈贞翔, 孙润元, 马坤, 邬俊, 李浥东, "结合注意力与循环神经网络的专家推荐算法," 计算机科学与探索, 2021, 16 (9): 2068-2077 (CCF B类)
                              ISSN: 1673-9418, Date: 2021/03/26
                                Abstract  BiBTeX

                              Abstract

                              在线问答社区(Community Question Answering, CQA)已经成为互联网最重要的知识分享交流平台,将用户提出的海量问题有效推荐给可能解答的用户,挖掘用户感兴趣的问题是此类平台最核心功能。一些针对问答社区的专家推荐算法已经被提出用来提高平台解答效率,但是现有工作大多关注于用户兴趣与问题信息匹配,忽视了用户兴趣动态变化问题,可能会严重影响推荐质量。本文提出了结合注意力与循环神经网络的专家推荐算法,不仅实现了问题信息的深度特征编码,而且还能捕获动态变化的用户兴趣。首先,问题编码器在预训练词嵌入基础上结合CNN卷积神经网络和Attention注意力机制实现了问题标题与绑定标签的深度特征联合表示。然后,用户编码器在用户历史回答问题的时间序列上利用长短期记忆神经网络Bi-GRU模型捕捉动态兴趣,并结合用户固定标签信息表征长期兴趣。最后,根据两个编码器输出向量的相似性计算产生用户动态兴趣与长期兴趣相结合的推荐结果。我们在来自于知乎问答社区的真实数据上进行了不同参数配置及不同算法的对比实验,表明该算法性能要明显优于目前比较流行的深度学习专家推荐算法。 

                              BiBTeX

                            2020

                            • Yufeng Wang, Kun Ma*, Laura Garcia-Hernandez, Jing Chen, Zhihao Hou, Ke Ji, Zhenxiang Chen, Ajith Abraham, "A CLSTM-TMN for Marketing Intention Detection," Engineering Applications of Artificial Intelligence, 2020, 91 (): 103595: 1-9 (EI: 20201108304140, WOS: 000528195100023, IF: 6.212, CCF-C, Q2, Top期刊)
                              ISSN: 0952-1976, Date: 2020/5/1
                              SCImago Journal & Country Rank
                              Code and data   Abstract  BiBTeX

                              Abstract

                              In recent years, neural network-based models such as machine learning and deep learning have achieved excellent results in text classification. On the research of marketing intention detection, classification measures are adopted to identify news with marketing intent. However, most of current news appears in the form of dialogs. There are some challenges to find potential relevance between news sentences to determine the latent semantics. In order to address this issue, this paper has proposed a CLSTM-based topic memory network (called CLSTM-TMN for short) for marketing intention detection. A ReLU-Neuro Topic Model (RNTM) is proposed. A hidden layer is constructed to efficiently capture the subject document representation, Potential variables are applied to enhance the granularity of subject model learning. We have changed the structure of current Neural Topic Model (NTM) to add CLSTM classifier. This method is a new combination ensemble both long and short term memory (LSTM) and convolution neural network (CNN). The CLSTM structure has the ability to find relationships from a sequence of text input, and the ability to extract local and dense features through convolution operations. The effectiveness of the method for marketing intention detection is illustrated in the experiments. Our detection model has a more significant improvement in F1 (7%) than other compared models.

                              BiBTeX

                              @article{WANG2020103595,
                              title = "A CLSTM-TMN for marketing intention detection",
                              journal = "Engineering Applications of Artificial Intelligence",
                              volume = "91",
                              pages = "103595",
                              year = "2020",
                              issn = "0952-1976",
                              doi = "https://doi.org/10.1016/j.engappai.2020.103595",
                              url = "http://www.sciencedirect.com/science/article/pii/S0952197620300671",
                              author = "Yufeng Wang and Kun Ma and Laura Garcia-Hernandez and Jing Chen and Zhihao Hou and Ke Ji and Zhenxiang Chen and Ajith Abraham",
                              keywords = "Text classification, Marketing intention, Topic memory, News",
                              abstract = "In recent years, neural network-based models such as machine learning and deep learning have achieved excellent results in text classification. On the research of marketing intention detection, classification measures are adopted to identify news with marketing intent. However, most of current news appears in the form of dialogs. There are some challenges to find potential relevance between news sentences to determine the latent semantics. In order to address this issue, this paper has proposed a CLSTM-based topic memory network (called CLSTM-TMN for short) for marketing intention detection. A ReLU-Neuro Topic Model (RNTM) is proposed. A hidden layer is constructed to efficiently capture the subject document representation, Potential variables are applied to enhance the granularity of subject model learning. We have changed the structure of current Neural Topic Model (NTM) to add CLSTM classifier. This method is a new combination ensemble both long and short term memory (LSTM) and convolution neural network (CNN). The CLSTM structure has the ability to find relationships from a sequence of text input, and the ability to extract local and dense features through convolution operations. The effectiveness of the method for marketing intention detection is illustrated in the experiments. Our detection model has a more significant improvement in F1 (7%) than other compared models."
                              }

                            2019

                            • 李浩、马坤、陈贞翔、赵川, "基于网络流量分析的未知恶意软件检测," 济南大学学报(自然科学版), 2019, 33 (6): 500-505
                              ISSN: 1671-3559, Date: 2019/12/1
                                Abstract  BiBTeX

                              Abstract

                              为了有效检测移动端的未知恶意软件,提出一种基于机器学习算法,并结合提取的具有鲁棒性的网络流量统计特征,训练出具有未知移动恶意网络流量识别能力的检测模型;该模型主要包括Android恶意软件样本数据预处理、网络流量数据自动采集以及机器学习检测模型训练;通过对不同时间节点的零日恶意软件检测的实验,验证模型的有效性。结果表明,所提出的方法对未知恶意样本的检测精度可以超过90%,并且F度量值为80%。

                              BiBTeX

                              @article{李浩2019基于网络流量分析的未知恶意软件检测,
                                title={基于网络流量分析的未知恶意软件检测},
                                author={李浩 and 马坤 and 陈贞翔 and 赵川},
                                journal={济南大学学报(自然科学版)},
                                number={6},
                                year={2019},
                              }
                            • 段吉东,刘双荣,马坤,孙润元, "基于集成学习的情感分类方法," 济南大学学报(自然科学版), 2019, 33 (6): 483-488
                              ISSN: 1671-3559, Date: 2019/12/1
                                Abstract  BiBTeX

                              Abstract

                              针对自然语言处理的文本情感分类问题,提出一种基于集成学习的文本情感分类方法;基于微博数据的特殊性,首先对微博数据进行分词等预处理,结合词频-逆文档频率(TF-IDF)和奇异值分解(SVD)方法进行特征提取和降维,再通过堆叠泛化(stacking)集成学习的方式进行分类模型融合。结果表明,模型融合对文本情感分析的准确率达到93%,可以有效地判别微博文本的情感极性。

                              BiBTeX

                              @article{段吉东2019基于集成学习的文本情感分类方法,
                                title={基于集成学习的文本情感分类方法},
                                author={段吉东 and 刘双荣 and 马坤 and 孙润元},
                                journal={济南大学学报(自然科学版)},
                                year={2019},
                              }
                            • Yufeng Wang, Shuangrong Liu, Songqian Li, Jidong Duan, Zhihao Hou, Jia Yu, and Kun Ma*, "Stacking-Based Ensemble Learning of Self-Media Data for Marketing Intention Detection," Future Internet, 2019, 11 (7): 155 (EI: 20193207277459; WOS: 000478637600017)
                              ISSN: 1999-5903, Date: 2019/7/10
                              SCImago Journal & Country Rank
                              Code and data   Abstract  BiBTeX

                              Abstract

                              Social network services for self-media, such as Weibo, Blog, and WeChat Public, constitute a powerful medium that allows users to publish posts every day. Due to insufficient information transparency, malicious marketing of the Internet from self-media posts imposes potential harm on society. Therefore, it is necessary to identify news with marketing intentions for life. We follow the idea of text classification to identify marketing intentions. Although there are some current methods to address intention detection, the challenge is how the feature extraction of text reflects semantic information and how to improve the time complexity and space complexity of the recognition model. To this end, this paper proposes a machine learning method to identify marketing intentions from large-scale We-Media data. First, the proposed Latent Semantic Analysis (LSI)-Word2vec model can reflect the semantic features. Second, the decision tree model is simplified by decision tree pruning to save computing resources and reduce the time complexity. Finally, this paper examines the effects of classifier associations and uses the optimal configuration to help people efficiently identify marketing intention. Finally, the detailed experimental evaluation on several metrics shows that our approaches are effective and efficient. The F1 value can be increased by about 5%, and the running time is increased by 20%, which prove that the newly-proposed method can effectively improve the accuracy of marketing news recognition.

                              BiBTeX

                              @Article{fi11070155,
                              AUTHOR = {Wang, Yufeng and Liu, Shuangrong and Li, Songqian and Duan, Jidong and Hou, Zhihao and Yu, Jia and Ma, Kun},
                              TITLE = {Stacking-Based Ensemble Learning of Self-Media Data for Marketing Intention Detection},
                              JOURNAL = {Future Internet},
                              VOLUME = {11},
                              YEAR = {2019},
                              NUMBER = {7},
                              ARTICLE-NUMBER = {155},
                              URL = {https://www.mdpi.com/1999-5903/11/7/155},
                              ISSN = {1999-5903},
                              ABSTRACT = {Social network services for self-media, such as Weibo, Blog, and WeChat Public, constitute a powerful medium that allows users to publish posts every day. Due to insufficient information transparency, malicious marketing of the Internet from self-media posts imposes potential harm on society. Therefore, it is necessary to identify news with marketing intentions for life. We follow the idea of text classification to identify marketing intentions. Although there are some current methods to address intention detection, the challenge is how the feature extraction of text reflects semantic information and how to improve the time complexity and space complexity of the recognition model. To this end, this paper proposes a machine learning method to identify marketing intentions from large-scale We-Media data. First, the proposed Latent Semantic Analysis (LSI)-Word2vec model can reflect the semantic features. Second, the decision tree model is simplified by decision tree pruning to save computing resources and reduce the time complexity. Finally, this paper examines the effects of classifier associations and uses the optimal configuration to help people efficiently identify marketing intention. Finally, the detailed experimental evaluation on several metrics shows that our approaches are effective and efficient. The F1 value can be increased by about 5%, and the running time is increased by 20%, which prove that the newly-proposed method can effectively improve the accuracy of marketing news recognition.},
                              DOI = {10.3390/fi11070155}
                              }
                              
                              
                              
                              

                            2018

                              2017

                                Conference Papers (Postgraduates)TOP

                                2025

                                  2024

                                    2023

                                      2022

                                        2021

                                          2020

                                            2019

                                              2018

                                              2017

                                                2016

                                                  2015

                                                  2014

                                                  Conference Papers (Graduates)TOP

                                                  2025

                                                    2024

                                                      2023

                                                      2022

                                                      2021

                                                      2020

                                                      • Xiaoqian Zhang and Kun Ma*, Toward Sliding Time Window of Low Watermark to Detect Delayed Stream Arrival, Proceedings of the 2020 16th EAI International Conference on Collaborative Computing: Networking, Applications and Worksharing (CollaborateCom 2020), Part of the Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering book series (LNICST, volume 350), Shanghai, China, Oct. 16-18, 2020, 444-454 (EI: 20210909990969, CCF C)
                                                        Date: 2021/1/22
                                                        Acceptance Rate: 77/211=36.5%.
                                                      • Yahan Yuan, Ke Ji, Runyuan Sun, Kun Ma, Zhenxiang Chen, Lin Wang, An Integration Method Of Classifiers For Abnormal Phone Detection, Proceedings of the 2019 6th International Conference on Behavioral, Economic and Socio-Cultural Computing (BESC 2019), Beijing, China, Oct. 28-30, 2019, (EI: 20200608146581)
                                                        Date: 2019/10/1
                                                      • Ying Pang, Zhenxiang Chen, Lizhi Peng, Kun Ma, Chuan Zhao, Ke Ji, A Signature-Based Assistant Random Oversampling Method for Malware Detection, Proceedings of the 2019 18th IEEE International Conference On Trust, Security And Privacy In Computing And Communications/13th IEEE International Conference On Big Data Science And Engineering (TrustCom/BigDataSE), Rotorua, New Zealand, Aug. 5-8, 2019, 256-263 (EI: 20194707716364, CCF C)
                                                        Date: 2019/8/1
                                                      • Yahan Yuan, Ke Ji, Runyuan Sun, Kun Ma, Zhenxiang Chen, Lin Wang, An Integration Method Of Classifiers For Abnormal Phone Detection, Proceedings of the 2019 6th International Conference on Behavioral, Economic and Socio-Cultural Computing (BESC 2019), Beijing, China, Oct. 28-30, 2019, 1-6 (EI: 20200608146581)
                                                        Date: 2019/10/1

                                                      2019

                                                      2018

                                                      • Qun Li, Zhenxiang Chen, Qiben Yan, Shanshan Wang, Kun Ma, Yuliang Shi and Lizhen Cui, MulAV: Multilevel and Explainable Detection of Android Malware with Data Fusion, Proceedings of 18th International Conference on Algorithms and Architectures for Parallel Processing (ICA3PP 2018), Lecture Notes in Computer Science, Guangzhou, China, Nov. 15-17, 2018, 166-177 (EI: 20185106273858, CCF-C)
                                                        Date: 2018/12/7

                                                      2017

                                                      2016

                                                      2015

                                                      Student Projects TOP

                                                        2024

                                                      • 2024-2025, 943, “谣” 无音讯——内容标题差异图网络研究及其在早期假新闻检测中的应用,方家琪,国家级大学生创新创业训练计划项目(省级)
                                                      • 2024-2025, 981, 英语阅读理解多项选择题自动答题系统设计与实现,刘博,国家级大学生创新创业训练计划项目(省级)
                                                      • 2023

                                                      • 2023-2024, 872,MOOC学习中学生退课行为预测研究与应用,樊承鑫,济南大学大学生创新创业训练计划项目(重点项目)
                                                      • 2023-2024, 889,基于低代码开发技术的社区防疫平台的设计与实现,徐乐轩,济南大学大学生创新创业训练计划项目(重点项目)
                                                      • 2023-2024, 2810, 融合外部知识的图注意力网络在假新闻识别中的研究,方家琪,国家级大学生创新创业训练计划项目(省级)
                                                      • 2022

                                                      • 2022-2023, 202210427021,基于GCN的虚假新闻识别及其系统研发,齐世豪,国家大学生创新创业训练计划基金项目(创新训练项目)(立项经费1万元)
                                                      • 2022-2023, 202210427017,手语心声,赵怡琳,国家大学生创新创业训练计划基金项目(创新训练项目)(立项经费1万元)
                                                      • 2021

                                                      • 2021-2022, MOOC平台学生退课行为预测方法及其系统研发,刘宇,济南大学大学生研究训练(SRT)计划项目(校筹)
                                                      • 2021-2022, 基于GCN的虚假新闻识别研究,齐世豪,济南大学大学生研究训练(SRT)计划项目(校筹)
                                                      • 2021-2022, 软件工程实践中学生行为跟踪及评价,周诗栩,济南大学大学生研究训练(SRT)计划项目(校筹)
                                                      • 2021-2022, 新闻Propaganda鼓吹宣传检测,王阳,济南大学大学生研究训练(SRT)计划项目(校筹)
                                                      • 2020

                                                      • 2020-2021, S202010427054,基于多模态内容识别的垃圾分类系统,尤文龙,国家大学生创新创业训练计划基金项目(创新训练项目)(立项经费0.5万元,省级)
                                                      • 2020-2021, 基于迁移学习的攻击性语言鉴别和跨度检测,郑坤昌,济南大学大学生研究训练(SRT)计划项目(校筹)
                                                      • 2020-2021, 基于深度学习的互联网虚假新闻识别研究,苏南,济南大学大学生研究训练(SRT)计划项目(校筹)
                                                      • 2020-2021, 基于Paddlehub的口罩佩戴识别方法研究与应用,张国辉,济南大学大学生研究训练(SRT)计划项目(校筹)
                                                      • 2019

                                                      • 2019-2020, 201910427029,失物招领智能匹配系统,姚胤楠,国家大学生创新创业训练计划基金项目(创新训练项目)(立项经费1万元)
                                                      • 2019-2020, 201910427027,基于WiFi检测与图像特征识别的多模式签到系统,张方略,国家大学生创新创业训练计划基金项目(创新训练项目)(立项经费1万元)
                                                      • 2019-2020, 基于场景智能识别的通用签到系统, 张方略, 微信小程序“U”计划,腾讯创新创业训练项目(立项经费5万元).
                                                      • 2019-2020, 失物招领智能匹配系统, 姚胤楠, 微信小程序“U”计划,腾讯创新创业训练项目(立项经费1万元).
                                                      • 2019.10-2020.3, 基于ISBN码识别的二手图书交易平台设计与实现, 侯志浩, 济南大学大学生研究训练(SRT)计划项目(校筹).
                                                      • 2019.10-2020.3, 基于机器学习的垃圾分类小程序设计与实现, 苏南, 济南大学大学生研究训练(SRT)计划项目(校筹).
                                                      • 2019.10-2020.3, 基于短文本的中英文立场检测, 王艳艳, 济南大学大学生研究训练(SRT)计划项目(校筹).
                                                      • 2019.10-2020.3, 基于集成学习的情感分析方法研究及其在舆情检测系统中的应用, 吴磊, 济南大学大学生研究训练(SRT)计划项目(校筹).
                                                      • 2019.10-2020.3, 基于Transformer的社交媒体攻击性语言检测模型设计与实现, 姚胤楠 , 济南大学大学生研究训练(SRT)计划项目(校筹).
                                                      • 2018

                                                      • 2018.11-2019.4, 献文-文献推荐与管理系统, 刘方涵, 济南大学大学生研究训练(SRT)计划项目(校筹).
                                                      • 2018.11-2019.4, 基于WiFi检测与图像特征识别的多模式签到系统, 张方略, 济南大学大学生研究训练(SRT)计划项目(校筹).
                                                      • 2018.11-2019.4, 失物招领智能匹配系统, 姚胤楠, 济南大学大学生研究训练(SRT)计划项目(校筹).
                                                      • 2018.11-2019.4, 基于文本分析下的营销意图识别, 侯志浩, 济南大学大学生研究训练(SRT)计划项目(校筹).
                                                      • 2018.11-2019.4, 基于主题模型的舆情潜在语义获取方法的研究, 段平碧, 济南大学大学生研究训练(SRT)计划项目(校筹).
                                                      • 2017

                                                      • 2017.06-2018.5, SX20170678, 概率主题模型研究及其在舆情监测中的应用, 段平碧, 济南大学大学生研究训练(SRT)计划项目(校筹).
                                                      • 2017.06-2018.5, SX20170679, 基于Vue.js的在线知识分享平台设计与实现, 李松谦, 济南大学大学生研究训练(SRT)计划项目(校筹).
                                                      • 2017.06-2018.5, SY20170716, 高校社团兴趣部落的设计与实现, 蔡钟晟, 济南大学大学生研究训练(SRT)计划项目(校筹).
                                                      • 2017.06-2018.5, SY20170737, 叮咚APP的设计与实现, 张家豪, 济南大学大学生研究训练(SRT)计划项目(院筹).
                                                      • 2016

                                                      • 2016.06-2016.10, 201613, 校乡汇——高校老乡社平台, 瞿浩, 国家大学生创新创业训练计划联合基金项目(创新训练项目)-腾讯创新创业训练项目.
                                                      • 2016.10-2017.05, S2015593, 社交化数据舆情监测系统设计与实现, 李昶昕, 济南大学大学生研究训练(SRT)计划项目.
                                                      • 2016.10-2017.05, S2015615, 云盘大文件分块上传设计与iOS客户端适配, 牛学蔚, 济南大学大学生研究训练(SRT)计划项目.
                                                      • 2016.10-2017.05, S2015620, 云开发协助平台的设计与实现, 李易君, 济南大学大学生研究训练(SRT)计划项目.
                                                      • 2016.10-2017.05, S2015644, 自动排课(班)算法研究及其在学生组织管理系统中的应用, 纪笑难, 济南大学大学生研究训练(SRT)计划项目.
                                                      • 2015

                                                      • 2015.11-2017.06, 2014210229, 基于核心点演化水纹软件开发过程模型的研究, 余智兵, 济南大学研究生创新基金项目.
                                                      • 2015.10-2016.06, S2015101, 同乡社交微信服务平台, 瞿浩, 济南大学大学生研究训练(SRT)计划项目).
                                                      • 2015.10-2016.06, S2015102, 海量数据缓存一致性方法研究及其在020电子云商系统应用, 杨哲, 济南大学大学生研究训练(SRT)计划项目.
                                                      • 2015.10-2016.06, S2015103, 基于多用户的大学生在线组队平台, 姚树巍, 济南大学大学生研究训练(SRT)计划项目.
                                                      • 2015.10-2016.06, S2015105, 穆宝网——民族特色与清真食品交易平台, 杨震, 济南大学学生科技立项.
                                                      • 2014

                                                      • 2014.06-2015.06, 201410427030, 多承租海量数据自适应存储与缓存关键技术研究及其在互助社交系统的应用, 唐子杰, 国家级大学生创新创业训练计划项目(创新训练项目).
                                                      • 2014.09-2015.09, 2014335, 面向服务的多租户通用微信公众平台, 杨哲, 济南大学大学生研究训练(SRT)计划项目
                                                      • 2014.09-2015.09, 2014339, 面向服务的多用户大规模开放在线课程平台研究, 房敬超, 济南大学大学生研究训练(SRT)计划项目
                                                      • 2013

                                                      • 2013.05-2014.04, 2013310, 面向服务的多租户互助社交系统设计和实现, 唐子杰, 济南大学大学生研究训练(SRT)计划项目

                                                      My Postgraduates TOP

                                                      Academic Master

                                                      Sep., 2020 - Jul., 2023

                                                      Sep., 2019 - Jul., 2022

                                                      Sep., 2014 - Jul., 2015

                                                      Sep., 2013 - Jul., 2016

                                                      Sep., 2012 - Jul., 2015

                                                      Sep., 2011 - Jul., 2014

                                                      Professional Master

                                                      Sep., 2021 - Jul., 2024

                                                      Sep., 2020 - Jul., 2023

                                                      Sep., 2019 - Jul., 2022

                                                      Sep., 2018 - Jul., 2021

                                                      Sep., 2018 - Jul., 2020

                                                      Sep., 2017 - Jul., 2020

                                                      Sep., 2015 - Jul., 2017

                                                      Sep., 2012 - Jul., 2015

                                                      Sep., 2011 - Jul., 2012

                                                      My Undergraduates TOP

                                                      2018-2021

                                                      2017-2020

                                                      2016-2019

                                                      2015-2018

                                                      2014-2017

                                                      2013-2016

                                                      • ...

                                                      2012-2015

                                                      Student Showcase

                                                      张家豪,自助点餐系统,2019
                                                      刘方涵,文献管理系统,2019
                                                      李松谦, 办公OA系统, 2018
                                                      瞿浩、杨哲, 济南大学官方网站, 2018
                                                      瞿浩土木建筑学院官方网站, 2018
                                                      瞿浩Jayce, 2018
                                                      瞿浩Programer Chrome Tab, 2018
                                                      瞿浩经英教育, 2018
                                                      瞿浩水墨人生商城, 2018
                                                      瞿浩, 校乡汇, 2016
                                                      李松谦2017年济南大学学工在线, 2018
                                                      李松谦、牛学蔚, 2017
                                                      李松谦2017届迎新系统, 2018
                                                      李松谦2017届学工在线纳新系统, 2018
                                                      李松谦2018年济南大学学工在线, 2018
                                                      杨哲, 山东大学车辆管理系统, 2017
                                                      杨哲, 济南大学官网, 2017
                                                      杨哲, 济南大学信息学院官网, 2017
                                                      杨哲, 大数据驱动创新方法工作平台, 2017
                                                      杨哲, 趣打印系统, 2017
                                                      牛学蔚, 晒米约拍平台, 2017
                                                      杨哲, 趣打印系统, 2017
                                                      姚树巍, 学生在线互助答疑系统, 2017
                                                      杨哲, 向素, 2016
                                                      杨哲, C.D.Cafe点餐系统, 微信号cdcafe_chin, 2016
                                                      杨哲, C.D.外卖系统-米优私厨, 微信号miyousichu, 2016
                                                      杨哲, 食全时美外卖, 微信号SQSMwaimai, 2016
                                                      杨哲, 以勒留学, 2016
                                                      杨哲, 土建学院在线手册, 2016
                                                      杨哲, 恒信微金CRM(北京玖富财富济南分部)测试版, 2016
                                                      杨哲, 吉林省镇赉县文化馆, 2016
                                                      纪笑难, 静态博客, 2016
                                                      纪笑难, 斗图网, 2016
                                                      纪笑难, 济南大学物业中心, 2016
                                                      纪笑难, 济南大学合作发展处, 2016
                                                      李昶昕, 新浪云CMS博客, 2016
                                                      瞿浩, 济南大学学工处, 2016
                                                      瞿浩, 基于Node.js的博客 Blog of Houser, 2016
                                                      瞿浩, About me, 2016
                                                      瞿浩, 济南大学土木建筑学院, 2016
                                                      瞿浩, 基于社交网络的社团管理服务平台, 2016
                                                      瞿浩, 基于社交网络的社团管理服务平台, 2016
                                                      Zhe Yang, Logistic Duty Management, 2015
                                                      Zhe Yang, Youth Literature, 2015
                                                      Zhe Yang, Student Online, 2014
                                                      Zhe Yang, USLab, 2014
                                                      Zhe Yang, Information Disclosure of UJN, 2014
                                                      Zhe Yang, Organization Department of UJN, 2013
                                                      Zhe Yang, Student Union of UJN, 2013
                                                      Zhe Yang, Yue Dong, 2015
                                                      Zhe Yang, Yue Qi, 2015
                                                      Zhe Yang, Sheng Shi, 2015
                                                      Zhe Yang, San Zhong, 2015
                                                      Zhe Yang, 988 Shopping, 2015
                                                      Zhe Yang, San Zhong, 2015
                                                      Zhe Yang, Blog of Zhe Yang, 2015
                                                      Zhe Yang, Internet Navigation, 2007
                                                      Zhe Yang, Zhongqi Data, 2010
                                                      Zhe Yang, Faxinbao, 2007
                                                      Zhe Yang, Lvtian, 2014
                                                      Zhe Yang, xiaocheng Blog, 2014
                                                      Zhe Yang, Jinxing, 2014
                                                      Zhe Yang, Dianti, 2014
                                                      Zhe Yang, Longao, 2014
                                                      Zhe Yang, Baihe, 2014
                                                      Zhe Yang, Jinmingtang, 2014
                                                      Zhe Yang, Lvwei, 2014
                                                      Zhe Yang, San Zhong, 2015
                                                      Zhe Yang, Dance Association of UJN, 2015
                                                      Zhe Yang, Logistic Management, 2014
                                                      Shuwei Yao, Online Courseware Management System, 2015
                                                      Zhe Yang and Shuwei Yao, Achievement Assistant, 2015
                                                      Zhe Yang and Shuwei Yao, purchase of second-hand unused goods, 2014
                                                      Zijie Tang, Youzi Fan, 2015
                                                      Zijie Tang, Information Youth of UJN, 2015
                                                      Zijie Tang, School of Political Science and Public Administration of UJN, 2015
                                                      Zijie Tang, Cultural Centre of UJN, 2015
                                                      Zijie Tang, UJNCMS, 2015
                                                      Zijie Tang, Student Union of UJN, 2015
                                                      Zijie Tang, DI JIANG, 2015
                                                      Zijie Tang, @ Me, 2013-2015 微电影【爱情概率论】
                                                      Zijie Tang, @ Me (ujn), 2013-2015
                                                      Zijie Tang, RSS Cube, 2013
                                                      Zijie Tang, UJN Facemash, 2013
                                                      Zijie Tang, Love Wall, 2014

                                                      Student Awards TOP

                                                        2024

                                                      • 面向视频安全的舆情话题检测与追踪系统,孙浩哲、李浩然、李广志、潘润,中国高校计算机大赛2024网络技术挑战赛,华东赛区三等奖,2024
                                                      • AI生成人脸图像鉴别,孙浩哲、李浩然、程兴启,第六届全球校园人工智能算法精英大赛,全国一等奖,2024
                                                      • 2023

                                                      • HTML5(含微信小程序方向),马毅凡等,2023年第二十一届山东省大学生软件大赛三等奖,2023
                                                      • 2022

                                                      • 基于物联网技术的高校外卖无接触配送系统,汪娟等,济南大学创新创业大赛三等奖,2022
                                                      • 手语心声,赵怡琳等,济南大学创新创业大赛三等奖三等奖,2022
                                                      • “创新、创意及创业”挑战赛,汪娟等,全国大学生电子商务挑战赛校级赛三等奖,2022
                                                      • 2021

                                                      • 智能手机程序设计,赵怡琳等,2021年第十九届山东省大学生软件大赛三等奖,2021
                                                      • 2020

                                                      • HTML5创意应用,苏南等,2020年第十八届山东省大学生软件大赛三等奖,2020
                                                      • “互联网+”应用软件的创意设计与实现,张标等,2020年第十八届山东省大学生软件大赛三等奖,2020
                                                      • HTML5创意应用,吴磊等,2020年第十八届山东省大学生软件大赛三等奖,2020
                                                      • 微舆情助手,吴磊,2020年中国高校计算机大赛-微信小程序应用开发赛全国三等奖,2020
                                                      • 微成长盒子,韩雨霏,2020年中国高校计算机大赛-微信小程序应用开发赛华东赛区三等奖,2020
                                                      • AI垃圾分类秘书,苏南,2020年中国高校计算机大赛-微信小程序应用开发赛华东赛区三等奖,2020
                                                      • 2019

                                                      • “互联网+”应用软件的创意设计与实现,姚胤楠等,2019年第十七届山东省大学生软件大赛一等奖,2019
                                                      • “互联网+”应用软件的创意设计与实现,张方略等,2019年第十七届山东省大学生软件大赛一等奖,2019
                                                      • 手机游戏,刘方涵等,2019年第十七届山东省大学生软件大赛一等奖,2019
                                                      • “互联网+”应用软件的创意设计与实现,侯志浩等,2019年第十七届山东省大学生软件大赛三等奖,2019
                                                      • “互联网+”应用软件的创意设计与实现,蔡文政等,2019年第十七届山东省大学生软件大赛三等奖,2019
                                                      • 自匹配失物招领,姚胤楠,2019年中国高校计算机大赛-微信小程序应用开发赛全国三等奖,2019
                                                      • 小智签,张方略,2019年中国高校计算机大赛-微信小程序应用开发赛华东一等奖,2019
                                                      • 献文PaperToMe,刘方涵,2019年中国高校计算机大赛-微信小程序应用开发赛华东一等奖,2019
                                                      • BetTime,侯志浩,2019年第二届微信小程序应用开发赛华东二等奖,2019
                                                      • 自匹配失物招领,姚胤楠,2019年全国移动互联创新大赛全国赛高校组二等奖,2019
                                                      • 自匹配失物招领,姚胤楠,2019年全国移动互联创新大赛山东赛区高校组一等奖,2019
                                                      • BetTime,侯志浩,2019年全国移动互联创新大赛山东赛区高校组二等奖,2019
                                                      • 2018

                                                      • 大数据分析与挖掘,侯志浩,2018第十六届山东省大学生软件设计大赛二等奖,2018
                                                      • HTML5创意应用,李松谦,2018第十六届山东省大学生软件设计大赛二等奖,2018
                                                      • HTML5创意应用,姚胤楠,2018第十六届山东省大学生软件设计大赛二等奖,2018
                                                      • 大数据与人工智能创意赛,侯志浩,2018第一届全国高校大数据应用创新大赛华东区域二等奖,2018
                                                      • 小腾序+,牛学蔚,2018高校小程序应用开发赛华东区域二等奖,2018
                                                      • 2017

                                                      • 济大校讯通,丁肖瀚,互联网+应用软件的创意设计与实现,第十五届齐鲁软件大赛二等奖,2017
                                                      • 晒米约拍平台,牛学蔚,互联网+应用软件的创意设计与实现,第十五届齐鲁软件大赛二等奖,2017
                                                      • 2016

                                                      • 快享点餐系统,杨哲,自助点餐系统,第十四届齐鲁软件大赛一等奖,2016
                                                      • 向素,杨哲,HTML5创意应用,第十四届齐鲁软件大赛三等奖,2016
                                                      • 2015

                                                      • 穆宝网,杨震,互联网+应用软件的创意设计与实现,第十三届齐鲁软件大赛二等奖,2015
                                                      • 艾特我社交平台,杨哲,嵌入式云端应用软件开发,第十三届齐鲁软件大赛二等奖,2015
                                                      • 图灵维修,冯志远,SmartProtecter基于智能移动段的后勤保修系统,第十三届齐鲁软件大赛三等奖,2015
                                                      • 2014

                                                      • 面向服务的多租户互助社交系统设计和实现,唐子杰,济南大学2014年大学生研究训练(SRT)计划项目优秀奖,2014
                                                      • 艾特我互助社交平台,唐子杰,基于百度云平台的应用开发,第十二届齐鲁软件大赛三等奖,2014
                                                      • 星际宅急送,段禹,2d游戏引擎的安卓游戏,第十二届齐鲁软件大赛三等奖,2014
                                                      • 2013

                                                      • RSS魔方资讯定阅平台,唐子杰,基于百度云平台的应用开发,第十一届齐鲁软件大赛一等奖,2013
                                                      • 建筑与画匠,刘国文,2D引擎移动游戏,第十一届齐鲁软件大赛二等奖,2013
                                                      • 酷跑,王明辉,基于百度云平台的应用开发,第十一届齐鲁软件大赛三等奖,2013
                                                      • 饭来也,乔宇,电子地图应用,第十一届齐鲁软件大赛作品完成奖,2013
                                                      • 2012

                                                      • 苏锴,基于Web开放平台的应用研发,第十届齐鲁软件大赛二等奖,2012
                                                      • 孙常熙,Web开放平台,第十届齐鲁软件大赛三等奖,2012
                                                      • 张阳,Web开放平台,第十届齐鲁软件大赛三等奖,2012
                                                      • 郭红宾,智能手机应用程序设计,第十届齐鲁软件大赛三等奖,2012